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Operating robotic space missions via time-based command sequences has become a lim-
iting factor in the exploration, defense, and commercial sectors. Command sequencing
was originally designed for comparatively simple and predictable missions, with safe-mode
responses for most faults. This approach has been increasingly strained to accommodate
today’s more complex missions, which require advanced capabilities such as autonomous
fault diagnosis and response, vehicle mobility with hazard avoidance, opportunistic science
observations, etc. Goal-based operation changes the fundamental basis of operations from
imperative command sequences to declarative specifications of operational intent and termed
goals. Execution based on explicit intent simplifies operator workload by focusing on what to
do rather than how to do it. The move toward goal-based operations, which has already begun
in some space missions, involves changes and opportunities in several places: operational pro-
cesses and tools, human interface design, planning and scheduling, control architecture, fault
protection, and verification and validation. Further, the need for future interoperation among
multiple goal-based systems suggests that attention be given to areas for standardization. This
overview paper defines the concept of goal-based operations, reviews a history of steps in this
direction, and discusses the areas of change and opportunity through comparison with the
prevalent operational paradigm of command sequencing.

I. Introduction

SPACE missions have traditionally been operated using time-based command sequencing, where commands are
planned to be executed at prescribed instants in time, and where telemetry is returned for operators to determine

if the planned activities were accomplished. This approach has worked well in missions that have a manageable
number of spacecraft states and transitions for operators to reason about, that interact with relatively predictable
environments, and that can resort to safe-mode to await operator intervention when unexpected behavior occurs.
These characteristics have been true of many missions from the earliest days of robotic space exploration, including
orbiters, planetary fly-bys, and stationary landers.
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As missions have become ever more ambitious, the limitations of traditional mission operations have become more
apparent. One limiting factor is complexity and workload. Preparation of command sequences and interpretation of
telemetry are time-consuming processes, especially for the most hazardous phases of a mission. Human operators
cannot keep a sufficiently detailed mental model of all the states and transitions safely and repeatedly to command a
vehicle, so operations must move to higher levels of abstraction, leaving more details to automation.A second limiting
factor lies in the assumption of predictability inherent in command sequencing. Some missions are already operating
in less predictable environments, such as Mars surface explorations, and some missions cannot return up-to-the-
moment telemetry to operators, either because of long light-time communication delays or infrequent communication
schedules. A third limiting factor is the slow reaction time to interesting events or changes. Missions that perform
scientific monitoring and military reconnaissance must capture and react to short-lived events—opportunities that
would otherwise be lost while waiting for human-in-the-loop analysis and control. A fourth limiting factor exists in
flight control architectures for sequence execution. “Sequencers,” as they are called, do not inherently support the
kinds of temporal flexibility and autonomous decision-making that are needed.

The answer to these challenges clearly suggests the need for more automation in ground systems and more
autonomy in flight systems, but is that all that is needed? Is command sequencing still an appropriate operational
paradigm for these more ambitious missions, or is there a need for—perhaps even a movement toward—a new
operational paradigm? In this paper we claim that there is a more suitable paradigm, termed “goal-based operations”,
that there is already movement in that direction and that it differs in a fundamental way from command sequencing.

The key principle behind this evolution is the specification of operator intent. Goal-based operation addresses
the above-mentioned limitations by making operator intent explicit and carrying it into uplink products. Providing a
system with a specification of intent endows it with the capacity to check for successful accomplishment of objectives,
and to use alternative methods to achieve objectives if necessary (see Fig. 1). Goal-based operation simplifies operator
workload by allowing them to focus on what objectives the spacecraft should be achieving, rather than how it should
be achieving them (command sequences). Goals also allow flexibility in the ordering and timing of activities, enabling
event-driven execution: an operating paradigm of increasing use in modern embedded systems, particularly those
that must operate robustly in unpredictable environments and in the absence of real-time communication with human
operators. Goals facilitate adjustable levels of autonomy and a spectrum of fault responses short of simply entering
“safe mode”.

Importantly, goal-based operation facilitates in situ decisions needed for mission scenarios such as reconnaissance
and exploration, making it easier to autonomously re-task assets in response to local observations. The Autonomous
Sciencecraft Experiment (ASE) [1–3] on the Earth Observing 1 (EO-1) spacecraft provides an example of such capa-
bility. As a result of onboard image processing, ASE re-targets EO-1 on subsequent orbits based upon changes such
as flooding, ice melt, and lava flows. EO-1 has been operating autonomously since November of 2004. Goal-driven

Fig. 1 Goal-based operations elevate control to the level of operator intent. A goal specifies a state to be achieved
in the system under control; it specifies what to do, not how to do it, thus reducing operator workload and leaving
options open for the control system.
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operation supports the trend of increasing functionality in flight systems, with more components designed to achieve
higher-level objectives and respond appropriately to off-nominal or opportunistic events, rather than simply execute
timed commands.

Aspects of goal-based operations are already in use in a variety of systems, sometimes under different names such
as “task-based commanding” or “activity-based operation”, but mostly implemented in ad hoc ways. An important
next step in this evolution of operations will be a general control architecture that (a) makes operational intent explicit
in the form of goals; (b) manages interactions among multiple activities; and (c) establishes a uniform operations
approach across the breadth of capabilities, including navigation, attitude control, observing, resource management,
fault protection, and coordination of multiple assets.

Although goal-based operation is presented in this paper from the perspective of robotic space missions, the
concepts apply equally to Earth-bound robots such as unmanned aerial vehicles (UAVs), autonomous ground vehicles
(as in the DARPA Grand Challenge), unmanned underwater vehicles (UUVs), and control of industrial processes.

This paper presents a brief history of goal-based operations in unmanned space missions, describes how the
concept affects different phases of the engineering lifecycle, and examines a representative software architecture
for a control system designed for goal-based operation. The paper also explores how a goal-based approach affects
operations process, tools and workflow, and then describes how operators can interact with a goal-driven system in
terms of different views. Finally, the paper addresses concerns about determinism, reliability, V&V, and impact on
established systems.

II. A Brief History of Goal-based Operations
The idea of operating systems at the level of explicit intent is not a completely novel concept—for example,

thermostats have been used to control the temperature of building interiors for over a hundred years. The thermostat’s
set point is a simple form of goal—it specifies the desired temperature that the building’s heating, ventilating, and air
conditioning control system must achieve and maintain. In the context of space exploration, goals have actually been
used for decades in limited fashion, particularly in the context of spacecraft attitude and articulation control systems,
for the purposes of pointing science instruments, communication antennae, solar panels, etc.Vehicle reorientation and
gimbal angles are “commanded” by specifying trajectories of desired angles and rotation rates; these state trajectories
are explicit representations of intent. Until recently, however, such representations have not been used consistently
across all spacecraft subsystems, and have not been integrated into coherent system-level control architectures and
operations processes. This section provides a brief history of goal-based operations (GBO), highlighting a number
of significant achievements from the space exploration domain.

One of the first full-scale (system-level) applications of goal-based spacecraft operations was the Remote Agent
(RA) Experiment [4], which was flight-validated in 1999 on the Deep Space One (DS-1) spacecraft, the first deep
space mission in NASA’s New Millennium Program. RA is a model-based, reusable, artificial intelligence (AI)
software system that enables goal-based spacecraft commanding and robust fault recovery. A simplified view of
the RA software architecture is shown in Fig. 2. RA consists of general-purpose reasoning engines (both deductive
and procedural) and mission-specific domain models. One of its key characteristics—and a main difference with
traditional spacecraft commanding—is that ground operators can communicate with RA using goals (e.g., “During
the next week take pictures of the following asteroids and thrust 90% of the time”) rather than with detailed sequences
of timed commands. RA determines a plan of action that achieves those goals; actions are represented as tasks that
are decomposed on-the-fly into more detailed tasks and, eventually, into commands to the underlying flight software.
The RA Experiment provided an invaluable proof-of-concept and lessons learned in a number of areas, including
benefits and challenges associated with autonomous goal-based operations. These lessons have been documented in
the Remote Agent Experiment DS-1 Technology Validation Report [5].

NASA’s Mars Exploration Rovers [6] (MER), Spirit and Opportunity, also employ a certain degree of GBO
capability, in both the ground system and onboard the rovers. In the ground system, operators use the Mixed-
initiative Activity Plan GENerator (MAPGEN [7,8]) tool to plan each rover’s science and engineering activities on
a sol-by-sol basis. Given a set of user observation goals and their priorities, this tool enables operators to construct a
plan that satisfies these goals and schedule the activities in the plan such that conflicts between incompatible activities
and oversubscription of limited resources are avoided. MAPGEN leverages the automated planning and scheduling
engine that was flight-validated as part of RA on DS-1, integrating it into a GUI environment that enables operators to
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Fig. 2 Remote Agent Experiment on DS-1. The Remote Agent experiment demonstrated goal-based operations
onboard the DS-1 spacecraft in 1999. In this architecture, the Mission Manager sends high-level goals to the Plan-
ner/Scheduler which then reasons through declarative planning models to generate detailed task plans consisting
of lower-level goals. The Executive executes the task plans by invoking scripts associated with the lower-level goals,
issuing commands as needed. The Diagnosis & Repair engine reasons through component models of the system to
provide the Executive with estimates of the spacecraft state, and guidance on how to achieve the lower-level goals.

incrementally build and edit their plans. With this tool, a plan is refined through iterations of automated computation
and judicious hand editing based on domain expertise, eventually converging to a final plan that the operator finds
appropriate. Onboard each rover, the flight software is programmed to accept a combination of abstract goal-like
directives, such as “drive to waypoint,” and lower-level commands. In a remote and unpredictable environment such
as the Martian surface, the rovers robustly achieve their ambitious science objectives by taking advantage of their
ability to make certain decisions in-situ, and execute flexibly specified plans in an event-driven fashion. These are
fundamental characteristics of goal-based systems.

The most recent and comprehensive space-based application of goal-based operations is the ASE [1–3]. ASE
is an autonomous software agent currently flying onboard the EO-1 spacecraft, which has demonstrated several
integrated autonomy technologies that together enable science-directed autonomous operations. The ASE software
includes onboard continuous planning, robust task and goal-based execution, and onboard machine learning and
pattern recognition. It has also more recently been augmented to demonstrate model-based diagnosis capabilities
with RA heritage. Like RA,ASE began as a technology experiment within NASA’s New Millennium Program, as part
of the Space Technology 6 project. Early tests had the goal-directed planning and execution capabilities deployed
as part of a ground-based sequencing system; the success of these tests built up confidence in the technology in
preparation for ultimate deployment of the capabilities onboard the spacecraft. The technology was declared fully
validated in May 2004. The ASE software now runs full-time onboard the EO-1 satellite, and has become its
primary mission planning and execution system. Through automation of the operations process, ASE has contributed
operational savings of approximately $1M per year, compared with EO-1’s nominal operations cost before ASE
deployment [3]. It has resulted in dramatic increases in science return, thanks to its intelligent downlink selection and
autonomous retargeting capabilities, and increased flexibility in operations, thanks to the resulting streamlining of
human-operator-in-the-loop activities. Another long-term benefit of the ASE project is documentation of the lessons
learned [2], which will certainly be invaluable to future applications of onboard autonomy and GBO.

Not surprisingly, NASA is not alone in its desire to exploit the benefits of spacecraft autonomy and goal-based
operations. In 2001, the European SpaceAgency (ESA) launched its first Project for OnboardAutonomy [9] (PROBA-
1) spacecraft. The PROBA-1 technology validation mission successfully demonstrated both onboard and ground-
based automation, including the ability to convey high-level goals (user requests) to the spacecraft via the internet.
ESA is also investigating the use of GBO and onboard planning and scheduling for ExoMars [10], a Mars rover
anticipated to be the first flagship mission in ESA’s Aurora Exploration Programme.
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Although this paper’s focus is on the use of GBO of spacecraft, this approach has broad applicability to other
domains, such as industrial robot control and autonomous unmanned air/underwater/ground vehicles. For example,
the Defense Advanced Research Projects Agency (DARPA) has sponsored Grand Challenges, which have stimulated
the development of various goal-directed planning and execution techniques and technologies. More broadly, GBO
is the focus of much research and development in academic, governmental and industrial organizations.

III. Goal-Based Operations across the Project Lifecycle
Although the term “operations” refers specifically to the final phase of a space mission project, the concept of

goal-based operations shapes engineering activities across the entire engineering lifecycle of a project (see Fig. 3),
as described below.

Pre-Phase A (Advanced Studies) and Phase A (Mission and System Definition):
• Establish high-level mission objectives, which may be expressed as goals.
• Build up (goal-based) scenarios for accomplishing the high-level objectives.
• Develop initial Concept of Operations.
Phase B (Preliminary Design):
• Identify key goal types (parametric specifications) and key goal expansions or elaborations.
• Flesh out Concept of Operations and goal-based operations process.
• Identify goal-based operations tools that must be adapted for the mission.
Phase C (Design & Build):
• Define full set of goal types.
• Define full set of goal elaborations or expansions.
• Define logic needed for scheduling.
• Design & implement achievement software (flight & ground).
• Design & implement goal-based operations tools.
Phase D (Assembly Test and Launch Operations) and Phase E (Operations):
• Instantiate, elaborate, schedule and execute goals needed to achieve mission objectives.
• May define additional goals for system check-out beyond the set of operational goals.
• Update goal-based operations tools and achievement software as necessary.

IV. Software Architecture
Goal-based operations applies to a large class of systems that can collectively be referred to as robots, both

mobile robots (spacecraft, surface rovers, humanoid robots, etc) and immobile robots (building environmental control
systems, chemical processing control systems, power generation systems, etc). In all cases the purpose is control
of a physical system to achieve specified objectives, and the complexity of those systems warrants careful attention
to software architecture for monitoring and control. Indeed, there has been a lot of relevant architectural work in
the overlapping fields of space systems, robotics, autonomous systems, and industrial process control. A general

Fig. 3 Project lifecycle phases. The concept of a “goal” shapes engineering activities beginning in Pre-Phase A,
where high-level objectives may be stated as goals and mission scenarios may be specified as sequences of goals, to
Phase E, where goals are instantiated, elaborated, scheduled, and executed.
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consensus has emerged around a three-layer architecture [11] consisting of reactive control at the lowest layer, plan
execution in the middle, and deliberative planning in the top layer. This section overviews one such architecture
specifically designed for goal-based operations, namely, the Mission Data System (MDS). This section describes
MDS in terms of architectural concepts, with some attention to goal representation and processing mechanisms, but
leaves many details to other papers [12–14].

A. Goal as a Specification of Intent
As stated earlier, a goal is a specification of operational intent, meaning that it specifies what we want a system

to do. Although a command sequence tells a system what to do in terms of time-based commands, the sequence
doesn’t knowingly achieve operational intent. For example, a command sequence may close a switch at 1:00 pm and
open it at 2:00 pm, but if the switch spontaneously opens at 1:30 pm, the operational intent may not be achieved,
and operators won’t be aware of that unless they check telemetry. Because we want to use goals in the real world
where things don’t always go as desired, a goal must have a success criterion that can be checked during execution.
A goal-driven control system has a contract to achieve (or maintain) some condition, or report that it has failed to do
so. This is the architectural concept of cognizant failure [15,16].

All of this raises the question of how to represent intent. Because we are going to use goals to operate a system,
goals must have clear semantics that can be processed by a computer. By itself, this requirement would allow a kind
of goal such as “execute procedure X with parameters a, b, and c, and return success or failure”, but such goals are
specific to the design of a control system, with no broader semantics. With goal-based operation we want to also use
goals for interoperation and coordination of a system of systems, with elements potentially built by different teams,
so goal semantics should be independent of control system design. Specifications of intent should come naturally
from the problem domain and should have obvious meaning to systems engineers and operators. In this vein, “intent”
must be about the system under control (including its environment), not the control system. For example, a goal may
specify a desired spacecraft attitude because that is a constraint on a state of the system under control, but a goal
must not specify a mode of an attitude controller because that is an implementation-specific state of a controller in a
control system.

The MDS control architecture defines a goal as a constraint on the value history of a state variable during a time
interval, as depicted in Fig. 4. The term “state variable” refers to an element of the control system that corresponds to a
physical state of the system under control. For example, a power switch in the system under control will physically be
in an opened state, closed state or tripped state, and the control system will use evidence such as sensor measurements
and issued commands to estimate the state of the switch as opened, closed, or tripped. A goal on the state of the
switch is specified as a constraint on the switch’s estimated state. For example, a goal could specify that the value
of the state variable must be ‘closed’ continuously from 2:00 pm to 3:00 pm. A different goal could require that the
switch be closed 90% of the time between 2:00 pm and 3:00 pm, thus tolerating temporary switch state transitions.
In all cases, a goal specifies a requirement on a state history that must be satisfied. If the goal’s constraint is violated,
the control system detects the violation and handles it in ways to be described later.

Fig. 4 Goal as a constraint on state and time. A goal represents operational intent as a constraint on the values of a
state variable during a time interval, such as “Camera temperature is between 10◦C and 20◦C from 2:00 PM to 3:00
PM”. As such, a goal can be visualized as a region of acceptable behavior in value and time, as depicted by the box.
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Goals can be specified on uncontrollable states. For example, the light level from the Sun is not controllable,
but activities that depend on some minimum light level—such as picture-taking—can include a goal on light level.
Such a goal will not be ready to start until the estimated light level satisfies the goal’s constraint. When such a goal
is coupled appropriately with dependent goals, then the starting or ending time of whole activities can be based on
such conditions. In this sense goals represent requirements, and forward progress in execution can be conditioned
on events.

Goals can also encode flight rules that may be imposed throughout one or more phases of a mission. For example,
an operational constraint like “The temperature of the science camera shall never exceed 30◦C” can be included in the
planning process to ensure that the mission’s planned activities are projected to satisfy the flight rule. Furthermore,
this goal can be loaded onboard the spacecraft, actively to monitor for its violation during execution and trigger an
appropriate fault response.

B. State Variables and Their Timelines
The preceding definition of “goal” raises the question “Can all types of operational intent really be specified as

constraints on the values of state variables?” We believe the answer is “yes” given that the whole purpose of operations
is to change the state of a system under control in specified ways. Examples of physical states include device
status (configuration, temperature, operating modes), dynamic states (vehicle position and attitude, gimbal angles,
wheel rotations), resources (power and energy, propellant, data storage, bandwidth), and data (science observations,
engineering measurements). Given the wide variety of kinds of state variables, goals can represent “low-level”
objectives, as seen with the power switch goal, and they can also represent “high-level” objectives that drive an entire
phase of a mission, such as “spacecraft has landed on Mars within ellipse x by time t .” This high-level goal will
get elaborated into a myriad of supporting goals, in a manner to be described later. Note that this “high-level” goal
still fundamentally expresses a constraint on state—in this case, the position of the spacecraft with respect to some
specified Mars surface-fixed reference frame.

As mentioned earlier, every state variable in the control system corresponds to a physical state in the system under
control. Each state variable contains two timelines: an intent timeline that holds the goals, ordered according to time,
and a knowledge timeline that holds estimated state up to the present time (see Fig. 5). During execution a goal that
extends from time t1 to time t2 succeeds if the estimated state history between t1 and t2 satisfies the goal’s constraint.
Suitable displays of these timelines enable an operator to examine the past, present, and future, and see how the
system under control behaved, insofar as it can be estimated from available evidence.

An important aspect of the state knowledge timeline is that estimates contain not only the ‘best estimated value’
of the physical state but also some representation of the amount of uncertainty. This inclusion of uncertainty is
important for robust control because it acknowledges that sensors and actuators are imperfect, as are our models of
devices and the environment. If the evidence available to a state estimator is noisy or conflicting or unavailable, then
the uncertainty of its estimate must be correspondingly higher. This aspect of estimate uncertainty is important in
two ways: it allows an estimator to be honest about the evidence and not pretend that its estimates are facts, and it

Fig. 5 Intent and knowledge timelines. A state variable contains two timelines. The intent timeline holds goals,
ordered according to time, as depicted by the colored polygons. The knowledge timeline holds estimated state
values, as depicted by the dashed blue line. A goal succeeds if its constraint is satisfied by the estimated state history
during its time interval.
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enables a controller to exercise caution when its control decisions depend on highly uncertain estimates. If an activity
depends on some minimum level of certainty of state estimates, then a goal can specify such a constraint because
uncertainty is part of the value representation of every state variable. We refer to such goals as knowledge goals.

C. Layered Control Architecture
A canonical architecture has emerged in the research community based on the notion of layered control loops

that address control problems at various timescales and level of abstraction [11]. The layers run concurrently and
asynchronously to provide a combination of responsiveness and robustness. Figure 6 shows the MDS architecture
consisting of four layers: Control, Execution, Planning, and Presentation. Note that the Presentation layer includes
human operators and their decision-making as part of the control system. It is here that operational intent is first
specified in the form of goals and it is here that the longest control loops are closed.

Goals can exist at very different levels of abstraction, as discussed in the previous section. Goals also address
control problems at various timescales, meaning that some goals have relatively short durations and/or stringent
requirements on starting or ending times, while other goals have relatively long durations and/or flexible starting
and ending times. As shown in Fig. 6, the lowest layer—the Control Layer—provides reactive control with real-
time responsiveness while the highest automated layer—the Planning Layer—generates globally consistent plans
in the form of intent timelines populated with goals, ready for execution. The Execution layer executes the current
plan, determining when to advance to the next goal on each intent timeline, consistent with temporal constraints.
The Presentation Layer provides the displays and control interfaces used by operators, where the highest level

Fig. 6 Software architecture layers. All layers operate asynchronously and concurrently to achieve goals. The Con-
trol Layer operates on short time-scales, reacting to local observations, while the Planning Layer operates on longer
time-scales, coordinating system-wide behavior, including system-level fault responses. State variables in the control
system correspond to physical states in the system under control.
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decision-making occurs—keeping in mind, however, that operators can control (i.e., specify goals) at any level of
abstraction, as discussed above.

As a goal is being executed in the Control Layer, its status is independently monitored in the Execution Layer by
evaluating its constraint against state estimates on the associated knowledge timeline. If the goal is still satisfiable
then execution proceeds normally, but if not, the Goal Monitor reports the failed goal to the Planning Layer while
the Control Layer continues to try to achieve the now-failed goal. The Planning Layer responds to the goal failure in
one of several ways, as discussed below in subsection F.

D. Goal Elaborations and the State Effects Model
A goal that is directly executable by the Control Layer can simply be submitted by an operator and the Control

Layer will try to achieve it. However, few goals can be achieved in isolation without considering their implications
on other related state variables of the system, and many goals simply cannot be achieved without the support of
additional goals on other state variables that have an effect on the state variable of the primary goal. For example,
spacecraft attitude has implications on antenna pointing and camera pointing, so a goal on the spacecraft attitude
state variable has effects that might be inconsistent with goals on these affected state variables. Likewise, a goal
on spacecraft attitude can only be achieved if goals on affecting state variables are achieved or maintained, such as
adequate power and propellant, warm catalyst beds for the thrusters, and healthy inertial measurement units.

The engineering knowledge of what state variables affect other state variables in the system under control is
captured in a state effects model, a sketch of which is shown in Fig. 7; this knowledge guides the design of fundamental
“blocks” of goals that can be assembled into plans that respect the causality among state variables in the system
under control. These fundamental blocks, called goal elaborations, specify supporting goals on related state variables
that need to be satisfied to achieve the original goal, or make the original goal more likely to succeed. Each type
of goal has an associated elaborator that generates its supporting goals (if any), and those supporting goals may
themselves have elaborations with supporting goals, so goal elaboration is a hierarchical process that finishes when
no more goals have elaborations (see Fig. 8). The design of goal elaborations is based on the state effects model and
the application of a few rules [14]. The resulting hierarchy is encoded in “parent/child” relationships in the goals,
providing full traceability up and down the elaborated goal “tree”.

Because there may be more than one way to achieve a goal, an elaborator may contain multiple tactics. These
alternate tactics may be explored during initial planning and scheduling and also in response to goal failures.

E. Goal Network and Temporal Constraint Network
To achieve coordinated control, goals must be organized so that temporal dependencies are honored and that

incompatible goals are not scheduled for concurrent execution. The structure in which a coordinated schedule of
goals is arranged is called a goal network, consisting of goals situated in a temporal constraint network. The goal
network is a product of fully elaborating the operator-specified goals, as described above, and scheduling the goals

Fig. 7 State effects model and goal elaboration. A state effects model, produced during analysis of the system
under control, describes effects among physical state variables. A goal elaboration, produced during operations
engineering, shows a goal above the dashed line and its supporting goals below the line, reflecting the state-to-state
effects that must be managed to achieve the original goal.
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Fig. 8 Hierarchical goal elaboration. The end result of goal elaboration is a tree of supporting goals with the “leaf
goals” being goals that have no further elaboration. The goals still need to be scheduled into a plan (a goal network)
and then executed. All of the goals in the tree—not just the leaf goals—are monitored during execution, because
each one represents intent with respect to a particular state variable.

onto the appropriate state intent timelines. Every goal has a starting and ending time point, and goals that must begin
or end simultaneously share the same time point. Every time point has a time window which designates the earliest
possible and latest possible times for the time point to fire during execution. This window—which may be as small
as an instant of time—is determined by the temporal constraints in the network. A temporal constraint specifies
minimum and maximum time duration between two time points. A temporal propagation algorithm updates the time
windows of time points as temporal constraints are added or modified during scheduling and as time points fire
during execution. Figure 9 shows a simple goal network.

F. Plan Execution
The Execution Layer is responsible for supervising execution of the current plan, as represented in a goal network,

including monitoring the status of every active goal. The intent timelines contain the goals to be achieved, ordered
according to temporal constraints, so the job of the Goal Executive is to keep the goal achievers (estimators and
controllers) in the Control Layer informed as to what goals to execute. As time proceeds, the Goal Executive marches
down the intent timelines, directing the Control Layer. (Some goal-based operations systems, such as the CASPER
planning and execution system in the ASE software [1] on EO-1, employ a continuous planning paradigm, which
enables better performance by defining a “planning horizon”, deferring detailed planning of distant future activities,
and incrementally replanning as new activities fall within this horizon. CASPER also employs a “commitment
window”, which precludes the scheduling of new goals in the very near term, and prevents existing goals that are

Fig. 9 Example goal network.A goal network consists of goals situated within a temporal constraint network, where
the starting time of a goal is governed by the time point attached on its left side, and the ending time by the time
point attached on its right side. Time points connected by a dotted line represent the same time point, meaning that
multiple goals may start or end simultaneously. The Epoch is a special singleton time point designating a predefined
reference instant in time. Temporal constraints of the form [Min Max] can be specified between time points.
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to be executed in the near term from being modified by the scheduling process. Such features are planned to be
incorporated into the MDS architecture, as well.)

At the same time, the Goal Monitor is checking each active goal to see if its constraint can still be satisfied. At any
time, if the estimated state history on a knowledge timeline violates the active state constraint on the intent timeline,
then the Goal Monitor reports the goal failure to the Planning Layer (to determine if a recovery is possible, e.g., by
re-elaborating goals into alternate tactics) and also reports it to the Presentation Layer to keep operators informed.
Of course, in the case of space missions with intermittent communication or long one-way light-time delays, such
notification to operators may be delayed.

The term goal failure conforms to a common definition of failure as a departure from intended operation. As such,
it is not a diagnosis; it simply reports that an objective has been violated without explaining why. The possible reasons
for failure depend on the goal, but can be divided among four categories: hardware failure, unexpected environmental
state, inaccurate model of the system under control, or software defect. These categories, of course, are independent
of the control architecture and are addressed through verification, validation, and operations activities. In the case of
hardware failure (or failure of the system under control), failures would be diagnosed by an appropriate estimator
in the Control Layer (e.g., for the health state variable associated with the failed device), thus a goal on that health
state variable would presumably fail (possibly along with any other goals on state variables related to the operation
of that device). Environmental states that impact the operation of the system are considered part of the system under
control, and are thus estimated in the Control Layer. Goals are used to specify constraints on such state variables; an
environmental state value that violates the expectation expressed in the goal would be detected by the Goal Monitor
as a goal failure. Inability of a controller effectively to achieve a goal (either owing to a software bug in the code, or
an error in the model that was used to design the controller) would also result in failure of the goal. So in all cases,
goal monitoring is the key mechanism for reacting to off-nominal situations.

A number of different responses to goal failure are allowed [14], including:
• simply removing the goal (and all of its supporting goals) and continuing execution of the remaining goals in

the network; failed goals may be placed into a holding bin for later re-elaboration and rescheduling;
• triggering the re-elaboration and rescheduling of the “parent” goal of the failed goal;
• propagating the failure up the elaboration tree by failing the “parent” goal of the failed goal; or
• safing the spacecraft, in the case of failure of a goal that jeopardizes mission success or safety.

In addition, the failure of a goal is normally reported via telemetry.

G. Unified Flight-Ground Architecture
Although flight software and ground software operate in very different environments, they must operate together

as a system, so they must share some architectural concepts, even if their respective implementations differ. Goal-
based operation permits considerable freedom as to how much control is performed in flight versus ground. In one
extreme, Ground could perform all the functions of goal elaboration and scheduling, and then transmit the resulting
goal network to a Flight system that contains only the Execution Layer and Control Layer. In the other extreme, an
operator on the Ground could issue a single top-level goal that is transmitted to a Flight system where it is elaborated,
scheduled and executed without human oversight. More typically, the right balance will be somewhere in between,
with a mix of high-level elaboration and scheduling on the Ground, and lower-level elaboration and scheduling on
the Flight system. Also, the balance may change in either direction over the course of a mission. For example, during
the earliest stages of a mission the Ground operators may choose to operate a spacecraft with goals that are entirely
elaborated and scheduled on the Ground, relying on a Flight safe-mode response in the event of a goal failure. As
the behavior of the spacecraft becomes better known, operators might begin to migrate some elaborations to the
Flight system to reduce their workload or reduce communications requirements. In the event of a Flight anomaly
that requires expert analysis, operators might then revert back to detailed control from Earth. The key point is that
using the same architecture in Flight and Ground gives a mission considerable operational flexibility.

H. Verification and Validation
A state/model/goal-based architecture as described herein holds several benefits in system-level verification and

validation (V&V). First, the scheduling process (described briefly above and more thoroughly in other publications
[13,14]) represents an initial validation of the plan against the state effects model to determine whether the goals we

133



DVORAK ET AL.

are asking the system to accomplish are achievable. Specifically, the scheduling algorithm checks for temporal incon-
sistencies (e.g., A before B, B before C, C before A) and state incompatibilities (e.g., resource over-commitments)
in the goal network. Second, the control system is self-checking in that it continuously monitors the status of every
executing goal. Thus, any behavior visible in a knowledge timeline that violates an executing goal will be detected
and will trigger a goal failure response. This automatic checking is certainly preferable to any post-processing of
telemetry, and is valuable not only during operations but also during testing. Third, there is a direct correspondence
between physical states and state variables in the software. That means that when running the control system against
a simulated system under control, it is possible to make a direct comparison between estimated state and true (simu-
lated) state. Such comparisons simplify the validation of estimators and controllers. Fourth, an architecture such as
MDS lends itself to implementation as a set of generic software frameworks, which, once validated, can be confi-
dently reused from mission to mission. The software V&V challenge is thus reduced to validating the “adaptation”
(i.e., mission-specific) code, and the “integrated” (e.g., subsystem- and system-level) software behaviors. Finally, the
explicit use of models—particularly the state effects model and the strongly related goal elaborations—provide for
direct inspection/validation by domain experts and also enable application of model-checking tools [17]. Of course,
this does not absolve the system engineers from having to ensure the correctness and completeness of the state effects
models used to design the control system.

V. Operations Process, Tools, and Workflow
Ambitious mission objectives project complexity onto operations. The complexity of mission operations can be

quantified by the number of system states an operator is required to keep track of. To reduce this number, in the
face of increasingly complex missions, the system must allow the operator to focus at a higher level of abstraction.
This concept is not exactly new. In traditional systems, operators typically do not begin the uplink process by sitting
down at a terminal and beginning to type in commands. They begin by formulating high-level objectives which are
then translated into high-level activities or observations, at an appropriate level of abstraction such that operators can
agree on scope and general timing. However, the uplink product is a collection of commands specified at roughly
the same low level of abstraction or, at best, sequences which group commands with a similar objective. These
command-based sequences are constructed with the intent that they will achieve the original higher-level objectives.
One stark limitation of this approach is the decomposition of activities into commands. As complexity increases and
the hierarchy grows, the question must arise “where do we draw the line between activities and their translation into
commands?” This question ignores the issues inherent in translation, such as how to ensure that information is not
lost. Given that concern, we are compelled to ask the more fundamental questions, “Why draw the line at all?” and
“Why require a translation from one form to another?” The intent inherent in goals can be specified at any level of
detail. For example, one could specify a goal for a rover to be at position (x, y, z), or for a switch to be closed. This
flexibility allows a goal network, in the degenerate case, to completely mimic a command-based sequence, but with
the additional benefits of an arbitrarily deep hierarchy and a seamless decomposition throughout.

Even in the extreme case where a goal-based system has been restricted such that no choices are given it with
respect to the building and execution of the goal hierarchy, operators still benefit from the specification of intent. In the
review portion of the typical uplink process, the reverse translation from commands to intent is an ad hoc procedure
which must be performed continually by the operator and, more often than not, only inside their own mind. The goal
elaboration hierarchy documents this translation in a formal, inspectable and—if we employ an architecture such as
MDS—verifiable manner, because the decomposition is directly informed by models of the system under control.
The plan can now be checked against an actual design document, thus creating a direct verifiable link between design
and operations. Furthermore, this link between design and operations travels through the flight software, because
software components are built directly from, and operate directly on, the very same models of the system under
control. This enables operators to more easily understand the flight software and how the system will interpret the
products that the operators uplink, thus mitigating both the need for resident flight software experts on the operations
team and the increased risk associated with workforce turnover. As discussed above, goals can represent not only
activities, but also resources and flight rules within the same hierarchy, thus allowing operators and tools to use the
models to trace resource violations back to the source.

In addition to allowing uplink operators to inspect high-level intent with respect to low-level control objectives,
goals and goal hierarchies allow downlink operators and system analysts to inspect the up-linked intent with respect
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Fig. 10 Product flow vs. work flow. Goal-based operations facilitate a shift from a product flow-oriented process to
a work flow paradigm.

to telemetry and actual results, in context. Furthermore, the state-based nature of telemetry in a goal-based system
allows operators direct and/or automated comparison of plans to results, even if such checks are not employed in the
flight system. Goals allow a system to close the loop across the entire operations process, directly relating uplink
products to downlink telemetry.

Discrepancy in form at different levels in the hierarchy also places limitations on operations tools and processes.
Typically, operations tools are not built to digest both activities and sequences, resulting in the use of multiple tools
in the refinement of plans. This necessitates a product flow paradigm, where products progress from one tool to the
next through the exchange of data files. Reversing the flow through this process is awkward at best, and is usually
avoided. Instead, fixes are often made in place without the benefit of the functionality of preceding tools or, owing
to restrictions on the duration of the process, activities are simply shed and science opportunities are lost. Goals
facilitate a shift to a work flow paradigm (Fig. 10), where one product set managed by a common tool undergoes
successive stages of refinement, resulting in a more reversible, collaborative, and seamless process.

VI. Operator Interaction with Goal-Based Systems
Because the objective of GBO is to enable control by the specification of operator intent, user interaction with

the ground/flight system inherently involves mechanisms for them to express their intentions, to visualize those
intentions, and, most important, to understand how those intentions are (or are not) being carried out in context.
Displays in the Presentation Layer need to provide information about what is planned, what is happening, and what
has happened at various levels of abstraction. In particular, users will specify what they want accomplished expressed
as high-level goals, perhaps partially elaborated into a network of subgoals, sequenced as an overall plan for mission
activity. Information depictions for mission operations will depict the goals and their state of accomplishment in the
context of the operational environment that the mission is actually encountering.

It is well recognized that goal and plan depiction will be necessary for operations at levels above command
sequencing [18]. To this point, however, operational systems that deal with goals [1,7] still, in general, depict only
sequences of activities over time, without indication of why those activities are being carried out at various levels
of abstraction. Without depiction of higher-level goals and of their elaborations, mission operators will not have the
information necessary to decide whether planned goals are still appropriate in dynamic environments or whether the
elaborated tactics of supporting goals remain effective.

One approach is to represent mission objectives, high-level goals, and lower-level implementations as an abstrac-
tion hierarchy [19,20]. Looking upward in such a hierarchy helps understand why something is being planned or
specified; looking downward helps understand how it is being accomplished. Displays can be organized by relation-
ships in the hierarchy to facilitate answering these questions. In general, goals and supporting goals form a complex
network, not a strict hierarchy, which adds challenges to user interaction design.

In general, one can consider three categories of views to provide context for GBO. A temporal view depicts
autonomous activities, goal accomplishment, environmental events and system responses over time, at various levels
of abstraction. Figure 11 is a temporal view of rule-based autonomy activity in a Solar-Terrestrial Relations Obser-
vatory (STEREO) spacecraft [20]. In a goal-based system rather than the rule-based system shown here, goals and
supporting goals would be depicted in the timeline. Current planning systems typically provide such a depiction, but
without further structural or operational context.

A structural view depicts relationships among goals, activities, and resources in hierarchies of abstraction and
dependency. Figure 12 shows a concept for a structural view, indicating the complex set of relationships among goals
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Fig. 11 Temporal view of autonomous activity in a STEREO spacecraft. A temporal view can show autonomous
activities, goal accomplishment, environmental events and system responses over time, at selected levels of
abstraction.

Fig. 12 Structural view concept. This view shows relationships among goals at different levels of abstraction and
dependency. From the perspective of a single goal, looking upward explains why it exists and looking downward
explains how it will be accomplished.

and supporting goals for an autonomous science activity. It could be based on the goal elaboration hierarchy, but
may also be organized according to an abstraction hierarchy and labeled in functional terms.

An operational view depicts goals, activities, and events in whatever context is appropriate to the system involved:
landscapes for rovers, system diagrams for spacecraft health and housekeeping, planetary surfaces for science obser-
vation, and so forth. Figure 13 shows a display from the planning tool for the CRISM (Compact Reconnaissance
Imaging Spectrometer for Mars) instrument onboard the Mars Reconnaissance Orbiter [21]. The display shows
orbiter ground tracks annotated with planned observations; it is used interactively together with a temporal view in
the observation planning process. The Web Interface for Telescience [22] (WITS) browser is another good example
of an operational view.

A key element in this concept of user interaction is that all of these views should be coordinated: user selection,
filtering, and manipulation in one view affects what is displayed or highlighted in the others. Additionally, the linked
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Fig. 13 Operational view in the CRISM planning tool. An operational view depicts goals, activities, and events in
an appropriate context.

views are used to understand states and goals in both initial planning and in operation, driven by appropriate telemetry.
For example, a goal that has failed may be indicated by a situation in the operational view (e.g., a rover not reaching
an intended waypoint). That goal is simultaneously indicated in the structural view, showing how the goal was to be
accomplished (look down) and why it should have been accomplished (look up). Selecting the goal slews the temporal
view to the time of failure and populates it with timelines of relevant state variables. Interaction with the timeline
provides causal information about the failure. The effectiveness of interactive timeline playback for understanding
causal relationships leading to autonomous spacecraft actions has been demonstrated for rule-based autonomy in the
STEREO mission [20], and should be even more important for GBO. If a new plan has been elaborated in response
to the failure, the linked information in these views helps to provide the needed explanation [8] of the situation and
the autonomous system’s response to it.

VII. Challenges for Goal-Based Operations
Despite the promise of significant benefits and the impressive progress that has already been made in this area

(see Sect. II), there remain a number of challenges for the wide deployment of GBO. Some of these challenges are
technical in nature, while others are predominantly cultural hurdles that need to be overcome. This section provides
a brief overview of some of these challenges, and suggests approaches to addressing them.

A. Observability and Controllability of the System
One commonly expressed concern about goal-based operations is that it could decrease the operator’s observability

into the behavior of the system, and/or the amount of controllability they have on the system. This concern stems
from a common interpretation of the word “goal” as a relatively high-level objective or state to be achieved. In any
mission, unusual situations may arise that require operators to take over detailed control of a vehicle, such as running
very low-level sequences, even down to the level of opening and closing switches for example, and the concern is that
GBO might preclude such detailed control. The fact is that GBO allows such control because goals at any level of
detail can be specified by operators, scheduled on the ground, and uplinked to the vehicle. During normal operations,
of course, low-level goals may be generated automatically from elaborations of higher-level goals, but this is not a
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requirement; operators can specify low-level goals directly and not specify higher-level goals, if desired. This comes
down to a tradeoff between desired level of ground controllability versus the amount of flexibility and robustness to
be provided onboard the spacecraft.

Similarly, when properly implemented, GBO allows for improved visibility into the operation of the system.
The approach places more emphasis on having good estimates of system state and the operator has access to more
understandable state-based telemetry at appropriate levels of abstraction, in addition to the low-level measure-
ments that typically make up the bulk of spacecraft engineering telemetry streams today. Furthermore, availability
of the success/failure status of executed goals, and the ability to downlink this intent-related information explic-
itly, makes it easier for operators quickly to focus in on activities that have not executed nominally, rather than
having to dig through megabytes or more of low-level telemetry, trying to identify the source of an onboard
fault.

Of course, in any system with some degree of autonomy, there is a real concern that operators may become so
reliant on the automation that they may become less able to intervene quickly in the case of an off-nominal situation
that the onboard automation is not able to resolve. Note that this is a general issue associated with the move towards
spacecraft with increased onboard autonomy, and not with GBO in particular. The solution to this problem lies in a
combination of:

• proper training, including simulated failures that exercise more complex diagnostic procedures;
• development of operator interface tools that facilitate visibility into the system state and provide information

about causes and purposes (see Sect. VI); and
• operations procedures that involve periodic confirmation of consistency between low-level telemetry and state

estimates.
These considerations apply equally well to providing situation awareness to operators who have been called in to
deal with off-nominal situations in lights-out operations or in response to a beacon call from a hibernating spacecraft.

B. Reliability/V&V (The Myth of Non-Determinism)
Another concern that has been expressed is that operators on Earth will not know in advance with certainty what

commands are being issued and when they are being executed. This is another example of a concern that pertains to
systems with onboard autonomy, whether goal-based or not. Although time-based sequences may allow operators
to have more control over the nominal execution of commands, they are inherently brittle; given a traditional flight
software architecture, where the nominal sequencing engine and the fault protection software run in parallel, any off-
nominal behavior is far more likely to result in a drastic system-level response, such as safing, when fault protection
takes over from nominal sequence execution. Furthermore, the fact of the matter is that operators have long accepted
some degree of uncertainty in the precise timing and commanding of certain activities, such as attitude control
maneuvers. Operators don’t know exactly when or for how long an attitude control system will fire each thruster;
this is a detail that has to be handled onboard because the dynamics preclude Earth-in-the-loop control. With more
and more robotic vehicles interacting with unpredictable environments, it is necessary to situate more real-time
decision-making in the vehicle. The challenge, then, is to design goal-based control systems that are as trustworthy
as attitude control systems.

Operators might also ask, quite reasonably, “How do I know that the control system won’t do something stupid?”.
This is a legitimate concern, just as it is for any software system, but it is sometimes based on an erroneous belief
that autonomous systems are “nondeterministic,” based on the arguments discussed above regarding execution
uncertainty. In fact, all software is deterministic (that is, unless an algorithm has been deliberately implemented
with randomization, as is sometimes the case for certain classes of optimization algorithm, for example), mean-
ing that if it is given the same conditions, including its own internal state, it will do exactly the same thing
as before. The real problem, of course, is that the state inputs to the deterministic flight software process have
a certain degree of uncertainty; that is, operators cannot predict what the system is doing in real-time because
they don’t know what conditions it is seeing, given intermittent or time-delayed communication with Earth. The
real concern is best articulated as “How well can you validate a goal-based control system?” To a large extent,
the answer depends on the design of the software architecture. As Sect. IV has shown, a state/model/goal-based
architecture provides a structure that is not only testable in traditional ways but also more readily analyzable by
model-checking tools.
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C. Software Maturity and Tool Support
A legitimate concern that people have regarding GBO systems is that the enabling software architectures and tools

are not as mature and widely available as those that form the basis for existing operations approaches. However,
as discussed in Sect. II, state-of-the-art goal-directed ground and flight software systems have been matured and
validated to the point of sufficient TRL to justify adoption of this approach as a viable option for new missions. To
mitigate this concern further, more work should be focused on the adaptation of familiar operations tools, to allow
them to be used for GBO applications in the near term, and the development of intuitive, easy-to-use tools that
provide operators with the observability and controllability they require, as discussed in Sect. VI.

D. Operations Processes and Training
Another valid concern is that current operations processes may not be directly compatible with GBO, and that

current operations personnel are not experienced in this approach. Clearly, the transition to a new paradigm such as
GBO is expected to have an impact on certain established operations engineering processes. Although a fair amount
of work has been devoted to developing the technologies and software tools that enable GBO, more effort must
be focused on developing and validating the processes that must go hand-in-hand with these technologies, and on
training personnel to adopt these processes. The discussion in Sect. II points out how some flight projects have started
tackling this problem, and how missions such as EO-1 have implemented effective operations processes built around
the premise of goal-directed activities.

E. Responsiveness/Performance Concerns
Although GBO does not inherently require any particularly complex software solutions, most of the GBO systems

fielded to date have leveraged deliberative planning and scheduling algorithms that exhibit worst-case exponential
time performance. Clearly, this is an area of concern, to the extent that these algorithms will continue to be deployed
onboard spacecraft with increasing frequency. Although progress has been made in recent years to improve the
performance of these algorithms, e.g., through the use of appropriate heuristics, it is acknowledged that there is a
significant level of complexity inherent in the planning and scheduling problem, which cannot be optimized away. The
right way to address this concern, therefore, is through architectural and operational mitigation strategies, including:

• allocating control functionality appropriately across the flight software architecture, such that the expensive
deliberation computations are performed by elements of the architecture that run at lower priority than the
elements of the architecture that are responsible for real-time control and safety-critical monitoring and
response behavior; and/or

• allowing the operators to specify additional constraints on the planning and scheduling problem to reduce the
amount of computation required to solve it, e.g., adding temporal constraints to further restrict the number of
acceptable schedules, or reducing the amount of flexibility that the planning and scheduling algorithms must
reason about.

VIII. Conclusion and Outlook
Goal-based operation of robotic systems changes the semantics of operations from the imperative directives of

time-based command sequencing to intentions on states of the system under control. Motivations for this change
include the desire to reduce operator workload and operator error, the desire to make more effective use of expensive
assets through increased automation, the necessity in some missions of making timely, in situ control decisions
to respond to short-lived events, and finally the need for implementation-independent semantics for operation and
interoperation of systems built by multiple vendors. In the longer term, GBO is an enabler for far-future missions
consisting of multiple assets coordinating among themselves to achieve mission objectives with infrequent oversight
from human operators.

It is encouraging to see the beginnings of a movement toward GBO, but if GBO is to achieve its full potential,
particularly with respect to interoperability, common operational views, and trained operators, then standards will
need to be developed. One such standardization effort exists in the European Cooperation for Space Standardization
(ECSS) standard on space segment operability for unmanned missions [23]. This standard defines three levels of
autonomy including: 1) execution of pre-planned mission operations onboard, 2) execution of adaptive mission
operations onboard, and 3) execution of goal-based mission operations onboard. To our knowledge, comparable
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standardization efforts specifically related to GBO have yet to be undertaken in the United States of America. This
is a situation that will need to be addressed in the very near term, as attention and investment turns to large-scale
“systems of systems” efforts, such as NASA’s Constellation Program. To overcome the challenges of such ambitious
enterprises with consistent safety and reliability, operability and interoperability standards will play a critical role in
the long-term strategy [24].
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